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FOREWORD

Quantitative knowledge of the convective heat transfer coef-

ficient and thermal recovery factor is essential in the engineering

effort to extend the use of immersion thermometric meteorological

sensors higher into the upper atmosphere. Such an effort at the

University of Utah, sponsored by NASA Langley Research Center (under

research grant NGL 45-003-025), has produced an algorithm for the

automatic computation of these coefficients. The computer subroutine

applies to a variety of sensor types over the varying altitudes and

air speeds of rocket-ejected meteorological parachutesondes. A

description of the subroutine and tabulated values are presented

elsewhere. The authors, in what follows, have adapted and extended

the notes of predecessors in the project with the purpose of document-

ing the underlying bases for the algorithm. Particular acknowledgment

is accorded Dr. Sadiq J. Alsaji, now at the College of Engineering

Technology, Baghdad, Iraq, for his early contributions to this com-

pilation.

Forrest L. Staffanson
Principal Investigator
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LIST OF SYMBOLS

A Area

b Constant (see Eq. 19)

C, Cm Overheat, mean overheat (see Eq. 31)

Cp, Cv Specific heats at constant pressure and volume, respectively

D, d Cylinder or sphere diameter

dVe Volume element in velocity space

E Energy flux

F Measured quantity in dimensionless form (see Eq. 61)

F Parameter related to geometry (see Eq. 22)

f Velocity distribution function

G Parameter related to geometry (see Eq. 22)

g Gravity constant

h Convective heat transfer coefficient

h Average convective heat transfer coefficient

I(s) Modified Bessel function

ierfc Integral of complementary error function

Jo Radiation flow

k Thermal conductivity

Kn Knudsen number (see Eq. 1)

L, k Characteristic length

M Mach number

m Mass of molecule

n Number density

Nu Nusselt number

Nu Average Nusselt number
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P Pressure, or normal component of momentum

Pr Prandtl number

Q Heat transfer per unit time

q Heat transfer per unit time per unit area

R Radius

R Universal gos constant

Re Reynolds number

r, r' Recovery factor, modified recovery factor (see Eq. 64)

St, St' Stanton number and modified Stanton number (see Eqs. 22 and 30)

T Temperature

t Time

U Free stream velocity

u Flow velocity (x-component)

V Most probable molecular velocity

v Flow velocity (y-component)

x Coordinate along the body axis

y Coordinate normal to surface

Thermal accommodation coefficient, or thermal diffusivity )
y Specific heat ration Cp/Cv

6, 6' Tangential and normal momentum accommodation coefficients, respectively

E Emissivity of the surface

SMolecular velocity

Recovery ratio, (Tr/To)

nI* Normalized recovery ratio

6 Local angle of attack (see Fig. 3)

Oc Cone semivertex angle

8' T1 - T2 (see Eq. 70)
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A Mean free path

S Dynamic viscosity

v Kinematic viscosity

r 3.14159 .... (= circumference length/diameter)

p Density

a Stefan-Boltzmann constant

T Tangential component of momentum

Modified speed ratio s sin 0

Stream function

Q Angle for concave surface

'SUBSCRIPTS

aw Adiabatic wall temperature

c Continuum flow condition

d Local condition in cylinder

eq Equilibrium condition

'FM Free molecule flow condition

in Incident on surface

Z Average value for characteristic length k

n Normal component

o Stagnation condition

re Reflected from surface

r Corresponding to recovery (temperature) condition

s Conditions outside boundary layer in the circular cylinder

w Wall condition

x Local condition

- v -



y Coordinate normal to surface

0 Free stream condition

i, 2 Denotes two different (surface) conditions

8 Local angle condition
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INTRODUCTION

This report concerns heat transfer phenomena-of rarefied gas

flows, and is based on a literature survey of analytical and experi-

mental rarefied gas dynamics. Subsonic flows are especially empha-

sized for the purposes of meteorological thermometry in the high

atmosphere.

Part one of the report deals with the heat transfer coefficients

(in external subsonic rarefied flow) for three basic geometries -- a

flat plate, cylinder and sphere -- in all flow regimes; i.e., free

molecule flow (Kn > 10), transition flow (10 > Kn > 0.1), slip flow

(temperature jump) (0.1 > Kn > 0.01), and continuum flow (Kn > 0.01).

Different types of heat transfer phenomena, and the analysis of

theoretical and experimental data are presented. The uncertainties

calculated from the interpolation rule, Nu 1/(/Nuc + 1/NuFM)

compared with the available experimental data are also presented for

cylinder and sphere.

In part two, recovery factor for each geometry in subsonic

rarefied flows is discussed. Uncertainties resulting from analyses

of experimental data available at the present time are also presented.
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PART I

HEAT TRANSFER COEFFICIENT

1. Introduction

The treatment of heat transfer in a gas depends on the structure

of the gas. Normally under standard conditions, the gas is considered

a continuum and no consideration is given to its molecular structure.

In the continuum regime, the flow and heat transfer can be adequately

described in terms of the Reynolds, Mach, Nusselt, and Prandtl numbers.

However, at very low absolute pressures and densities, a gas behaves

more like independent particles described by kinetic theory. Thermo-

metric sensor elements used in the upper atmosphere encounter air flows

throughout the varying degrees of rarefaction between the continuum

and free molecule conditions. The purpose of this report is to survey

the results of recent analytical and experimental investigations of

heat transfer in rarefied gases.

A gas departs from continuum properties and is said to be "rare-

fied" when the molecular mean free path X approaches 1 percent of the

dimension of the flow field. Suppose k is some characteristic dimen-

sion of the flow field, such as the radius of a cylinder over which the

gas is flowing. The ratio X/Z, Knudsen number [1], is a measure of the

degree of rarefaction of the gas flow. The Knudsen number is related

to the Mach number, M = V/Vs, and the Reynolds number, Re pVy/P.

Kn X 1/ 2 M
Kn = -= - -= 149 Re-- (1)-k2 Re Re
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When the Knudsen number is very small, the number of collisions

between molecules in the vicinity of the body is large relative to

the number of collisions of the molecules with the body. In this case

continuum concepts, the Navier-Stokes equations, and the Fourier heat

conduction law all apply. Under such conditions the flow is completely

characterized by the Reynolds number and Mach number; the Knudsen

number does not enter the problem explicitly since it is considered to

be small [5].

When Knudsen number becomes sufficiently large, continuum concepts

fail and must be modified for calculating the heat transfer. At very

high Knudsen number, the number of collisions between molecules becomes

negligible and the flow is termed "free molecule flow". Between the

continuum and free molecule regimes, there is a rather wide range of

intermediate flow regimes.

It is convenient to divide rarefied gas dynamics into the fol-

lowing regimes [1]: free molecule flow (Kn > 10), transition flow (10

> Kn > 0.1), slip flow (0.1 > Kn > 0.01), and continuum flow (Kn < 0.01).

The indicated Knudsen number ranges are approximate only, and different

types of heat transfer phenomena and theoretical approaches occur in

each regime. The following discussion is concerned with understanding

the heat transfer mechanisms in the continuum, transition, slip, and

free molecular flow regimes for the sphere, cylinder, and flat plate,

and is divided into groups based on the different regimes. The

analytical and experimental estimation of uncertainty in the heat

transfer coefficient for external rarefied subsonic flows around the

specified geometries is of particular interest.

-3-



2. Continuum Flow Regime

In the continuum regime, the boundary layer concept is used to

yield theoretical expressions for heat transfer coefficients. Basic

conditions assumed in the development of the boundary layer equations

are well observed in continuum flow. Expressions of Nusselt number

Nu(re, Pr) available from the literature are briefly discussed below

for the flat plate, sphere, and circular cylinder.

2.1. Flat Plate

The boundary layer concept yields theoretical expressions for

the heat transfer coefficient over a flat plate. However, the heat

transfer coefficient is greatly influenced by the kind of flow, i.e.,

laminar or turbulent. The heat transfer coefficient with turbulent

flow is usually larger than with laminar flow.

2.1.1. Laminar flow over a flat plate

For a flat plate with constant wall temperature heated over its

entire length, the boundary layer concept yields the following equa-

tion for the local Nusselt number [3]:

Nux = 0.332 (Pr)1/3 (Rex )/2 (2)

and, therefore, for the convective heat transfer coefficient,

hx =(Nux) 0.332 k (Pr)1/3 U)l/2 (3)

-4-



Often, for calculations in practical problems, an average value h over

some length L from the leading edge is useful [3].

L L
1 d c r dx _

h = h dx = 2 2 2h (4)
L x L x L (4)

o o

For the flat plate in continuum flow, then,

Nu = 2Nux

Notice the heat transfer coefficient tends to increase toward the

leading edge of the plate. Of course Eq. 2 holds only for x suffi-

ciently large to assure continuum flow.

2.1.2, Turbulent flow over a flat plate

When the Reynolds number based on the distance from the leading

edge has reached the critical value (approximately 3 x 105), the flow

in the boundary layer becomes turbulent. The Nusselt number based on

the average heat transfer coefficient for turbulent flow over the

entire heated plate is given by [3]

0.8 1/3

Nux = 0.037 Rex) (Pr) (5)

In reality a certain part of the boundary layer near the leading edge

is always laminar. Integration must then be carried out in two

separate steps, over the laminar part and over the turbulent part.

However, assuming that the turbulent boundary layer starts right on

the leading edge, integration yields [89]
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Nux = 0.037 (Pr)1/3 [(Re) 0.8 - 23,100] (6)

for critical Reynolds number 5 x 105 , and

Nux = 0.037 (Pr)1/3 [(Re)0.8 - 4,200] (7)

for critical Reynolds number 105

2.2. Cylinder

A boundary layer builds up on the forward side of the cylinder

in the flow. This boundary layer is always laminar near the stagna-

tion point [6]. If the cylinder is heated, a thermal boundary layer

exists in the same way. In the immediate proximity of the stagnation

point, the velocity outside the boundary layer increases linearly with

the distance from the stagnation point as measured along the body

surface. This is expressed by us = cx. The heat transfer in this re-

gion for cylindrical bodies with constant surface temperature in a

flow normal to their axes was determined theoretically by Squire [3,4].

This calculation yields the local Nusselt number,

ux1/2

Nu = B (8)

where u is the free stream velocity and B is a constant tabulated as

follows:

Pr .7 .8 1.0 5. 10.

B .496 .523 .570 1.043 1.344
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From Eq. 8, the local heat transfer coefficient yields

/u 1/2

h = Bk (j) (8.a)

where k is thermal conductivity.

For potential flow around a cylinder with circular cross sec-

tion, the velocity us outside the boundary layer is, according to

potential theory [3,4],

u 2u sin (2x (9)
s o d

where

us = velocity outside the boundary layer

d
x = a = the distance along the surface from the stagnation

point

d = the diameter of the cylinder

and

6 = angle of the point we are considering measured from the.

stagnation point (radian)

In the neighborhood of the stagnation point, the "sine" can be replaced

by the angle. This gives

us = 4u (10)

and the local heat transfer in the neighborhood of the stagnation point

becomes

- 7 -



1/2

h = 2Bk () (11)

In the dimensionless form,

hd

d =

ud 1/2

= 2( o
2 v /

S2B Red) 1/2 (12)

where Nud and Red are based on free stream velocity and diameter.

The local heat transfer coefficient along the surface of a

cylindrical body at a great distance from the stagnation point can be

calculated from the integral energy equation [5, 6]:

d (t - T) udy = a(dT (13)

0

where

To = free stream temperature

a = k/pCp = thermal diffusivity

and

subscript w refers to wall.

Methods for such calculations have been developed by many

investigators [3,7]. Usually the distance (x) from the stagnation

point is divided by the greatest diameter of the cylinder (its major

axis L) to make angle 6 = s/L a parameter. In all laminar boundary

layers the Nusselt number increases with the square root of the Reynolds

number.

- 8 -



The flow around cylindrical and spherical bodies separates from

the surface at about n/2 (varies from laminar to turbulent flow), and

determination of the heat transfer coefficient for the separated part

must consider the effect of separation.

The total heat flow from or to a tube, or the average heat-

transfer coefficient around the circumference, is of interest. Hilpert [8]

made accurate measurements of this average value for air flow as shown

in Fig. 1. Nusselt and Reynolds numbers are calculated with the tube

10 e

5 + wIreMn.1 oIN mm o pP A.8 ZN mm -

Nm x3- wx . 002 o5mm , #/,,, b 2 .0 mm -
2 *enrbA.3J nObO mm V 'pl 1 A0D 44.0 mm -

y Ab., + a mm 6 e An 000 mm
10 0 WdAs ao mm %, PA AA 5 160.o mm

10 M 100 mm

1 23 5 2- 3 -- 5 102 2 0--- 35- 2 3 5 -10 s5 2 10

RKD

Fig. 1. Average film heat-transfer coefficient on a cylinder in flow
of air normal to its axis. [6]

diameter as the reference length and with the free stream velocity as

the reference velocity. From Fig. 1 and from the results of other

experiments, especially at low Reynolds numbers, it can be seen that

in various ranges of the Reynolds number, the Nusselt number can be

presented in the form [3]

Nud = 0.43 + C (Re d)m (14)

- 9 -



The numerical values for the constants C and m are tabulated below [3]:

Red C m

1-4,000 0.48 0.50

4,000-40,000 0.174 0.618

40,000-400,000 0.0239 0.805

It should be noted that a high turbulent level in the approach-

ing stream increases not only the average heat transfer coefficient,

but also the local heat transfer on the upstream part of the cylinder

circumference which is covered by laminar boundary layer. Increases

in Nud up to 25 percent have been measured for turbulent levels up to

7 percent. (This is, however, of no concern in the upper atmosphere

since the turbulence level of the free stream is very low due to the

absence of the turbulence initiating factors.)

2.3. Sphere

Heat transfer at the surface of a sphere is determined by the

flow conditions. Flow around a sphere resembles that around a circular

cylinder. A laminar boundary layer covers the upstream portion of the

sphere, and separates from the side of the sphere creating an irregularly

fluctuating flow condition along the downstream portion. On the side

of the sphere, the boundary layer may become turbulent at large Reynolds

numbers, influencing the location of the flow separation.

The average heat-transfer coefficient for a sphere cannot be

obtained by calculation since it is not possible yet to calculate the

- 10 -



heat transfer in the separated flow region on the downstream part of

the sphere. The following relation was proposed by Grigull [9] from

experiment:

--- 0.6 1/3Nud = 0.37(Red) 6 (Pr) (15)

for a range 20 < Red < 150,000. For small Reynolds numbers, the

following relation was proposed [9]:

Nud = 2 + 0.37(Red) 0 6 (Pr) (16)

Equation 16 describes the actual condition well, because as Red + 0,

this equation yields Nud = 2, which is the value for heat transfer by

pure conduction.

3. Free Molecule Regime

3.1. Introduction

Free molecule flow is defined as the flow obtained in the limit

when the Knudsen number becomes large. In that case, the Boltzmann

equation takes the form [1, 10]

df -f + af F f
- +5 -- + - -0dt -at x m (17)

where

f = velocity distribution function

= acceleration vector, 5 = dx(t)/dt

S+ 2 + 2
F = force vector, F = md x/dt

In such flows, the interaction of the molecules with the wall

- 11 -



plays a major role, while the collisions of the molecules among them-

selves may be neglected. A gas in which the molecules do not collide

is called a Knudsen gas. For a given characteristic dimension of the

flow, Knudsen gas may be represented as a gas in which the density and

the diameter of the molecules tends to zero. Then the mean free path

tends to infinity. The general solution of Eq. 17 in the absence of

external forces has the form

f(tX, ,x - t ) (18)

with the initial conditions,

xt 0 X09 (t) =to

With large Knudsen number, the heat conducted in unit time from

unit area may be expressed approximately by Knudsen's formula [10]

QFM
qFM = 

A

1-1 P + R/
+ (R*b - 1)] 2 ( 1 - T (19)

where

R* = R1/R
2

b (constant) = 0 for parallel plates

= 1 for concentric cylinders.

= 2 for concentric spheres

P = the pressure of a Maxwellian gas at the density at a

temperature T

- 12 -



T = (T1 + T2)/2 for small temperature differences

M = molecular weight of the gas

R molecular gas constant

C = molecular heat capacity at constant volume

The above equation is based on the assumption of diffuse reflec-

tion at the surface, where the tangential and normal momentum accommoda-

tion coefficients are equal to one. For parallel plates, Sparrow and

Kinney [11] derived an expression for these accommodation coefficients.

In the case of the parallel plate geometry, the approximate characteristic

length is the separation between the plates L. For concentric cylinders

and spheres, the choice of the characteristic length is not obvious.

But Wachman [12] argues that the important characteristic length is the

inner radius R i . This is supported by many investigators (13, 14, 15].

The characteristic length is of great interest, because it is needed

in defining the Knudsen numbers and Reynolds numbers accurately.

In order to determine the heat transfer to a body in a rarefied

gas, it is necessary to know the flux of energy and momentum carried

by the molecules impinging on and reemitted from the surface. The

thermal accommodation coefficient is defined by [1]

Ein -Ere

= E. - E (20)in w

Ein and Ere are the incident and reflected energy fluxes from the sur-

face, and E is the energy flux which the molecular stream carries away

from the surface at the surface temperature T . The thermal accommoda-

tion coefficient may vary between 1 (complete accommodation, diffuse

- 13 -



reemission) and 0 (specular reemission). In experiments it is difficult

to ensure that the surface is free of contaminants and, therefore, re-

ported values of the coefficient range from 0.01 to nearly 1.0, depend-

ing on the condition of the surface. The surfaces most commonly used

for engineering purposes are not clean, but contain some contaminants.

For such surfaces the accommodation coefficient may vary between 0.8

and 0.98.

The momentum accommodation coefficient must be defined to predict

the energy transport properly. Schaaf and Chambre [1] suggested the

following tangential and normal accommodation coefficients which are

similar to the thermal accommodation coefficient

T - T
in re

6 = (21)
in w

and

6' in re (21.a)
P. -P
in w

T and P are tangential and normal components of the momentum. The

subscripts have the same meaning as in the thermal accommodation

coefficient. For completely diffuse reflection 6 = 6' = 1, and for

completely specular reflection 6 = 6' = 0. For common engineering

surfaces 6 is in the range 0.8 to 1.

3.2. Review of Theory

3.2.1. Oppenheim theory

In the free molecular regime, the density is so low that the

- 14 -



structure of the gas cannot be considered continuous. Therefore, the

molecular structure is taken into consideration. This suggests that

heat transfer between an object and a rarefied gas stream in this regime

can be calculated entirely from the fundamental motions of the kinetic

theory of gases. Oppenheim [16] was successful in developing a theory

for predicting the heat transfer coefficient and thermal recovery

factor. Oppenheim gave the following relation for Stanton number:

St = y + 1 ac (G + F) (22)
pCpu 2y

where

a= thermal accommodation coefficient

2

f e-0 dA (22.a)

A

A- 2(1 + erf )
F + dA (22.b)

A

and

A = surface area

= u /V = s sin 6 (dimensionless)
n m

u = component of mass flow velocity u normal to the wall

V = most probable molecular velocity (m/sec)

s = u/Vm = yM/2 = speed ratio (dimensionless)

M = Mach number

Oppenheim calculated Stanton number for various geometrical

shapes and presented the results in the form of plots as shown in Fig. 2.

He also presented an approximate expansion of Eq. 17 for various shapes,

- 15 -
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Fig. 2. Heat transfer from a flat plate, a sphere, and a transverse
circular cylinder in a free molecule flow. [16]
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and pointed out that the flat plate results could be applied to any

surface making a constant angle 6 with the flow. Thus

St6 = St n() sin 8 (23)

where the subscript n indicates a flat plate normal to the flow, and

= s sin e (23.a)

Therefore, the flat plate results apply to wedges and cones in compar-

ison with flat plates at an incident angle of 6 with the flow, where

the angle of incidence of the plate corresponds to half the opening

angle of the wedge or cone. Conditions on the flat plate with zero

incident angle correspond to those occurring on a cylinder of any cross-

sectional shape in axial flow. He proposed the following equations for

Nusselt number for various shapes:

For plate

NUFM =RePr + s = M (24)
Y 4sv-'J2

For right circular cylinder in a flow perpendicular to its axis

Y + 1 1 2J1  s + S sNuF = RePr Y+ e L2 ) + S +
FM Y s o 2 o 2

For sphere

NuFM = RePr Y + + ierfc(s) + - erf(s) (26)

- 17 -



where

1o(s) = modified Bessel function of first kind and zeroth order,

1 j -s cos 6
-- e cos d (dimensionless)

0

1 1(S) = modified Bessel function of first kind and first order,

1 [ -s cos 6- -- e cos dO (dimensionless)

0

ierfc(s) = integral of complementary error function (1 - erfx)dx
0

(dimensionless)

erf(s) = error function

2

- e dx (dimensionless)

0

Comparing the Oppenheim theory with the experimental data reported in

reference 17 yields: a maximum error of about 7 percent, due mainly to

the variation of the accommodation factor.

3.2.2. Others

Oppenheim theory was based on the assumption that only convective

heat transfer takes place. Shidlovskiy [20] made some correction to

the Oppenheim theory by considering radiation effects in addition to

the convective effects. Radiation plays a substantial role in the general

ensemble of the thermal process under certain conditions. The general

heat loss can be expressed by

- 18 -



q = qo + s(aT - J (27)

where

E = emissivity of the body

a = Stefan-Boltzmann constant

J = the radiation flow from the outside source

q con= heat loss due to convective heat transfer

aP 2 2P 3/2 s  2 (-s 2
S (RT) 2  sin + e sin + - s sin

x [1 + erf(s sin )) 2( - T s2 - (27.a)

For circular cylinder in a flow perpendicular to its axis, Atassi and

Brun [21] deduced another practical equation for the free molecule,

subsonic region.

Let the convective heat transfer rate be

q = St Cp pu (Tw - Tw) (28)

where

St = Stanton number

Cp = specific heat at constant pressure

pm = free molecular density

um = free stream velocity

T = adiabatic cylinder wall temperature
aw

Then, considering adiabatic wall temperature, another form of Stanton

number will be possible.
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q = St'Cpp u T - T) (29)

From Eqs. 23 and 23.a,

T -T
L aw

St' = St a (30)
T -T

By Eq. 24, we can evaluate St' which is a function of T , and is also

weakly dependent upon the mean overheat Cm, where

C wi + T -j T (31)
m 2 Taw

where

T = adiabatic cylinder wall temperature

T = cylinder temperature

C = overheat, T - T )/T

C = mean overheat
m

y

v >x

z

Fig. 3. Coordinates of a body in a free molecule flow [22].
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In this case, Kogan [22] solved the Maxwell velocity distribution

function as

3/2

3/2 exp - h( - v)2 (32)

where

mh =
- 2KT

n = number density

For hypersonic free-molecule flow, the Stanton number becomes[22],

St -21 Q (33)Y + 1Apv eq

eq w

where

a = average accommodation coefficient

A = area of the body

v = free stream velocity

T = equilibrium temperatureeq

T = wall temperature of the body

Q = average heat transfer rate = qdA

A

Equation 33 is similar in form to Oppenheim's Eq. 22. Figures 4 and 5

show the results of the calculation for drag coefficient and Stanton

number, respectively. In calculating the drag coefficient, the cylinder

and sphere are referred to a normal area section, while the plate is

referred to the area of one side. It is assumed that Tt = T T or

a = 1.
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Fig. 4. Free molecule flow past convective bodies [22].
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Fig. 5. Free molecule flow past convective bodies [17].
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In addition to the heat transmitted to the surface by the

incident molecules, the surface may receive heat from sources in the

body, from heat conduction in the body, and from radiation. Usually

T /To I 1; i.e., the body may be considered cold. In general, the

calculation reduces to very laborious quadratures, especially if one

does not make the assumption that Tr is constant over the body surface.

Schaff [1] and Hayes [2] derived the following expression for

convective heat transfer per unit time to a unit surface (dA) of a

convex body immersed in the steady, uniform, free molecule flow of a

perfect gas.

dQ = ip RT\ TS 2 + Y 2 + + FfW (1 + erf)M F27 .Y +1 2(y -1)

e-0 2
2 ) dA (34)

= s sin e, and 6 is the local angle of attack as shown in Fig. 3.

T is the wall temperature. The subscript - refers to free stream

conditions. s is the speed ratio defined in Eq. 24, um is the free stream

velocity.

At very large Mach number, Hayes and Probstein [2, 48] convert

Eq. 34 to

1 3 ( + IT
dQFM = ap u. sin 6 - y y - 1 dA (35)

From Eq. 35, the adiabatic recovery temperature can be calculated as
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T
= [2(y - l)(y + l) s2 (36)

Therefore, if heat transfer occurs due to convection only, Tr is

independent of both a and 6. For high values of s the stagnation

temperature of the flow is given by [1,2]

T = T (1 + -1 s2) T (-1 s2) (37)

From Eqs. 36 and 37, Stalder, Goodwin, and Craeger [17] found that in

high speed free molecule flow, the recovery temperature is higher than

the free stream stagnation temperature. When s sin 6 is large compared

to both unity and /T /T (highly cooled surface), Eq. 35 becomes

3

dQFM = (1/2) apmu sin 6 dA (38)

Equations 35 and 38 show the Mach number independence principle [16,17],

namely that in high speed rarefied flows, the heat transfer depends

only on u., p., T and a.

Using Eq. 34, heat transfer rates can be calculated in terms of

the modified recovery factor and modified Stanton number.

T - T
r' r + r + 1(39)

y T - T y
O a

St' St -- Q-- = -_  Y (40)y + 1 aAp u Cp(T r - T y + 1

which is similar to Eq. 33.
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For a flat plate at an angle of attack 6 (Fig. 4) [1],

r' = 2s2 + 1 -1 + VT (N + erf ) e (41)

St' L 1 - L e 2 + V/R(N + erf ) (42)

where

S~s sin 0

When the front and rear surfaces are isolated, A is the surface of one

side only and N = 1. For the rear surface 6 is replaced by -8. When

both front and rear surfaces are in thermal contact, then A is the total

surface area and N = 0.

For a circular cylinder of surface area A at an angle of attack

e (Fig. 4), Talbot [21] gives

r' =2 + sin2  o( + ()/ [(i + io + 2

(43)

St' = sin/(4/)] { + ' I + *11 ) e - 2/2 (44)

For a sphere with surface area A, Schaaf and Chambre [1] reported the

result of Sauer [24]

S(2s2 + 1) [1 + (1/s)ierfs] + 2s2 - (erfs)/ 2s
2 2

s 1 + (l/s)ierfs + (erfs)/( 2s

St' = [1/(8s2)] s2 + sierfcs + (erfs)/2 (46)
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where the notations are the same as those in Eqs. 25 and 26.

The above results must be modified for a nonuniform gas in

which the distribution function is different from the Maxwellian

distribution because of the presence of viscous stresses and heat flow

[25], and as indicated the results are applied for high Mach numbers.

Expressions for heat transfer to cylinders and spheres for the free

molecule flow of a nonuniform gas were derived by Bell and Schaaf [26]

and Touryan and Maise [27]. Combined radiative and convective heat

transfer for large Mach numbers were handled by Stalder and Jukoff

[281, Stalder, Goodwin and Craeger [17], and Abarbanel [29]. Numerical

solutions for flat plates are presented in Eckert [7], which includes

the effect of solar radiation on the surface temperature of bodies in

high altitude flight. Abarbanel [28] developed general results for

the surface temperature of bodies in free molecule flow when both

convective and radiative transport are significant. The adiabatic

recovery temperature of a surface element with local angle of attack

e for high speed flows (s2 >> 1, s sin 6 > 1) as derived by Abarbanel

[29] is

T 2s2 + 5 - 3y) -(kT )3/ ~2 + (1 + erfJ 4 v'ie
r Y 1 m 0 2

(47)

for convex surface to the flow. Where k is the Boltzmann constant, m is

the molecular mass, e is the emissivity and absorptivity of the surface,

and 6 is the Stefan-Boltzmann constant. Concave surfaces in free

molecule flow were investigated by Sparrow [30], Schamberg [31], and

Chanine [32].
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3.3. Analysis of Experimental Results

3.3.1. Flat plate

Experiments for the heat transfer coefficients of free molecule

flow past a flat plate at zero angle of attack have been studied quite

extensively in the supersonic and hypersonic range, but unfortunately

little work has been done for the subsonic region. However, by

empirical results, we can correlate the local Nusselt number, Nux (Re,

M), and get a free molecule curve which is close to the free molecular

theory curve. It is inevitable there exist some deviation between the

two curves, say 7 percent maximum accuracy for Oppenheim theory [16].

However, the Oppenheim theory agrees very well with the experi-

mental data. Interpolation of the theoretical values of continuum and

free molecule flows by the law

Nu = 11 1
Nu Nu
c FM

into the transition regime, yields values which are very close to

experimental data in that regime.

3.3.2. Cylinder

Predictions by Stalder, Goodwin, and Creager [17] agree well with

the experimental results of Vrebalobich [33], and Atassi and Brun [21]

in the subsonic region. Vrebalobich [33] made a successful experimental

work on the transition flow regime, between slip and near free molecule

regime.

Atassi and Brun [21] found that for the subsonic region, the
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dependence of the convection coefficient "h" upon Mach number is weaker

in the free molecule flow than in continuum flow.

The theoretical curves [17] and the experimental data are com-

pared for supersonic flow in Fig. 6. Close examination of this figure

shows the departure in the free molecule regime and continuum regime

from the transition regime.

10 --
------ FREE MOLECULE FLOW -

THEORY, a=0.9, s>2 f
DATA OF KOVASZNAY 8

o - TORMARCK, REF. I

W - - TEST POINTS
NOTE SOLD PONTS MODEL DIA. MOLECULARNOTE:: SOLID POINTS

Z REPRESENT DATA IN. SPEED RATIO,s
TAKEN IN UNIV. OF o .0010 2.05
CALIF. TUNNEL .0010 1.60

S10 iO- * .0010 1.88 to 2.04
S-I--- .0050 2.05
U) .0050 2.65

zT vH o .051 1.65
.080 1.60
.126 1.60
.126 2.65
.126 1.9 to 2.3

10-2 ,---4

10-2 10" 1  I 10 102 103
REYNOLDS NUMBER, Relo

Fig. 6. Convective heat transfer coefficients for transverse cylinders
in supersonic flow. [17, 18, 19]
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Fig. 7. Nusselt numberversus Reynolds number in rarefied subsonic

flow. [21]
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3.3.3. Sphere

Very little experimental data exists for the sphere, especially

for the free molecular flow regime. Therefore, in this regime the

required data is determined by assuming that the free molecular flow

theory applies [3], and by utilizing the experimental results from

transition and slip flows.

Figure 8 supports the above argument. The general trend of the

curve is very similar to that of the cylinder.

FREE MOLECULE FLOW CONTINUUM FLOW
THEORY REF 3 THEORY,REF2

.. ' 4EQUATION 6.3

hav, o Y ' 

0.8 KEY MACH
00 M NO.

00.10
S 0.17

o 0.37
0 0.59
A 0.69

2 4 6 10 20 40 60 100 200 400

Fig. 8. Heat transfer coefficients for spheres in subsonic flow [43,93].
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3.3.4. Generalization

From previous analysis, the theory which is closest to

experimental data for subsonic flow is the Oppenheim theory. Many

investigators [1,34] obtained very good experimental data for the near

free molecular or transition regime, but not for the free molecular

regime. Close examination of their empirical results reveals an

important observation in the free molecule region. It confirms the

prediction of kinetic theory in its present form with the momentum and

energy flux of reemitted molecules estimated in terms of macroscopic

and empirically determined accommodation coefficients. This indicates

a significant collision rate in the gas surrounding a body, or enclosed

within some walls. In free molecule regime the effects of momentum

and energy transfer between the gas and the walls are largely reduced.

The deviation from the free molecular values of the dependent variables

occurs for Knudsen numbers ranging from about 5 to 15. So far, the

reason for deviation from the free-molecular theory is not clear [34].

But this deviation can be fitted within expressions of the form, Nu =

Nuf - A/k, where A may depend on Mach number, temperature ratio, or

geometry [34]. In subsonic free molecular flow, by the analogy of

Nu = Nu (Re, M), some useful analysis can be made by letting M - 0

at fixed Reynolds number, without loss of qualitative information.

This results in a correlation [34] which eliminates Mach number as a

parameter in the transition or free molecule curves for all subsonic

data.

Reasonable accuracy of Nu (Re,M) in free molecule flow regime

is still that of Oppenheim theory, in which the accuracy is within 7

percent compared to .the experimental data [17, 34].
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4. Transition and Slip Flow Regime

4.1. Introduction

4.1.1. Transition regime

A complete satisfactory formulation of the flow and energy

equations to yield results on heat transfer and skin friction in the

slip and transition regimes has not been sufficiently completed at the

present time [1]. In the foregoing discussion, the case of free

molecule flow was considered in which the effects of molecular encounters

have been entirely neglected. With increasing density the effect of

these collisions begins to be important and the low density part of the

transition regime begins. Jaff4 [35] derived a general formulation of

this regime, employing a perturbation expansion solution of the Maxwell-

Boltzmann equation in the inverse power of the molecular mean free path.

The velocity distribution function f in the transition flow regime is

assumed to be of the form [1, 30, 36]

f = fo [1 + + +

where

fo =Maxwellian equilibrium velocity distribution function

i = characteristic length

L = typical macroscopic dimension

( 1) < 1 = dimensionless correction parameter

Many analytical calculations have been-performed in this regime

by Heineman [37], Keller [38], Wang-Chang and Uhlenbeck [39], Kryzwoblocki

[40], Szymanski [41], and Lunc and Lubonski [42]. Very extensive
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experiments in this regime were performed for spheres and cylinders

(wire) in subsonic flows by Kavanau [43], Vrebalovich [33], Takao [36],

and Atassi and Brun [21] for different thermal accommodation coefficients.

Results agree with the values obtained from the free molecule theory,

which predicts some deviation at the beginning and end of that regime

from the transition regime and continuum regime, respectively [34].

In order to eliminate the dependence of the results on the

thermal accommodation coefficient and on the Mach number [22], the data

of the above investigators [21, 36, 43, 44] were revised in Fig. 9 as

St/StFM versus StFM/Stc. St is the Stanton number calculated from the

data, StFM is the limit of St as Reynolds number goes to zero, and Stc

is the limit of St as the Mach number goes to zero. This idea was

suggested by Sherman [34]. In supersonic flows, a shock wave arises

in the undisturbed uniform free stream flow from the disturbed region.

II I II o i l

.St/St F,,.1! +St t€  

DATA "
MACH NO. SOURCE

00.10 x0.37
AO.T +0.59
o0.21 o0.69 KAVANAU (1955)

VO.36
*0 TAKAO (1961)

0.1 10

Fig. 9. Subsonic heat transfer from spheres [34].
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Because of this the local mean free path around the object may be

smaller than that of free stream. This affects the dimensions of the

Knudsen number, boundary layer, viscous layer, merged layer, and

collision rates, and eventually different heat transfer phenomena from

the subsonic flow. Analyses of stagnation point and heat transfer

phenomena were investigated by Rott and Lenard [45], Kemp [46], Herring

[47], Probstein and Kemp [48], Ting [49], Van Dyke [50, 51, 52], Hick-

man and Giedt [531. Wittliff and Wilson [52], Potter and Mill [55],

and Carden [561. Details will not be discussed here, since this re-

port is mainly concerned with the subsonic flow.

4.1.2. Slip flow regime

In the slip flow regime, there is a velocity slip at the wall

[1, 22]. Therefore, the work done on the wall carries heat transfer

which is different from that of free molecule flow. The gas density

is slightly less than that characteristic of a completely continuum

flow. In the slip flow, there are three important, but interrelated,

parameters, the Mach number M, the Reynolds number Re, and the

appropriate Knudsen number, M/Re or M//Re [1]. These parameters serve

to indicate compressibility, viscosity, and rarefaction effects,

respectively [1]. The Knudsen number is on the order of 0.01 to 0.1

[25]. The rarefaction effects are associated with very strong

compressibility and viscous effects [1].

In general, the boundary layer will be laminar and thick for

very low Reynolds number. Therefore, the boundary layer is not strictly

applicable [22, 25]. Interaction effects between this thick viscous

layer and an inviscid layer are expected [1]. The general effect of
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the slip flow and temperature jump condition is to increase friction

and heat transfer, as described in Eq. 48.

q= K[T/ay + pus(Du/Dy)] y = 0 (48)

with slip velocity and temperature jump boundary conditions [1]

u(o) = - + FT
c 0 4 pT Bx}

(49)

T(o) - T =2 - a 21 (T
S a y+ Pr -\ay0

given by Kennard (101, where v is viscosity and y is the coordinate

normal to the wall. Using Eq. 48, and various velocity and temperature

jump boundary conditions, Oman and Scheuing [57] obtained closed form

expressions for the recovery factor and for the heat transfer flow

over a flat plate.

Burnett [58] developed equations associated with the Maxwell

molecules, using the thirteen moment approach. These results are

presented in complete detail in references 59, 60, and 61. A method

of solution was suggested by many authors before Burnett [59, 62, 63,

64]. However, many difficulties arise in the actual problem, even

though the solution method is good for monoatomic Maxwell molecules

[1, 64]. For example, air is composed of diatomic nitrogen and oxygen

for the most part, and intricate boundary conditions make the problem

unresolvable. The order of the Burnett equations is higher than the

order of the Navier-Stokes equations, so that additional boundary

conditions are necessary [64]. Also, present experimental evidence
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seems contrary to either the Burnett or thirteen moment equations, and

although the linearized Boltzmann equation has been solved by Wang-

Chang and Uhlenbeck [39], it was far from the practical case. Although

it is very difficult to get an exact solution as a closed form, many

authors [57, 58, 59, 65, 66, 67, 68] contributed valuable resolutions

analytically and experimentally.

4.2. Flat Plate

The flat plate with zero angle of attack in a laminar flow was

treated in terms of the Rayleigh problem of an impulsively started

plate [1, 18]. The inertia and viscous terms in the Navier-Stokes

equations can be simplified in this case [68, 70, 71, 72].

The heat transfer from the impulsively started plate was

calculated [4, 73] from the energy equation. Neglecting heat conduc-

tion terms such as (k 2) as being small in comparison with (k ,

and also neglecting the convective terms in y, only the motion of the

plate at constant velocity u in the x-direction is considered. The

energy equation becomes

aT 82T
u a = a 2 (50)

ax

with boundary conditions

at y = 0, x > 0

2-a 2Y X OT
T -T = y (51)
y=0 a y +l Pr
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at x = 0, y > 0

T = Tf (= free stream condition)

For accommodation coefficient a = 0.8, and for y = 1.4, the solution

of Eq. 50 becomes

(2
x

St M 0.38 2 erfc x 1 + x(52)

x 2 2 2  
2

x2

where

x2 = JRePr/6.9M 2

and

Nu hSt = =
RePr upCp

Unfortunately, at present there is no experimental data to

confirm Eq. 52; however, it is reported [3] that its accuracy is about

10 - 15 percent error. This estimation was based on the accuracy of

the skin friction relation which was developed for the flat plate in

the translation and slip regime using the same technique [3, 17, 34].

It should be pointed out here that Eq. 52 was developed essentially

for the slip flow regime and that its extension to the transition regime

implies the increase of its error in this regime.

Drake and Kane [73] solved the heat transfer from a flat plate

for the transition regime, neglecting dissipation terms and assuming

constant properties, but considering a surface temperature jump boundary

condition. Solving the energy equation through Laplace transform yields
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hRe Pr 1 Re Pr
Pr x exp erfe - (53)

k 8 M

where

8 = 1.996 (2 - c) _
a y+l

The average Nusselt number can be written from Eq. 53 by

integrating along the plate length to x = L, remembering 6 = 1.48,

Pr = 0.72 for air.

h L
av

Nu average = k

Re _ Re 2 Re

= 2.25 M exp M erfc 1 +-
1.35M 2  V 1.35M2

(54)

From Eq. 54, the average Nusselt number for the continuum regime

where the Reynolds number is very large and Mach number is small can

be predicted.

Nu = 2.19 Re (55)

But actually, the constant is four times as large, compared to

experimental results [73].

Accuracy of Eq. 54, compared with the results of experiments,

is predicted within 20 percent by the analogy of the skin friction

experimental data of the flat plate [34, 73].

Oman and Scheuing [57] obtained closed form expressions for the

recovery factor and for the heat transfer in laminar slip flow over

a flat plate.
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4.3. Sphere

The problem of obtaining experimental results for heat transfer

from a sphere in the slip and transition regimes is complicated by the

fact that unless the sphere diameter is very small (0.001"), the Mach

number must be large enough to establish the flow in the slip regime

[43]. Ordinarily, this means that the flow is supersonic. In such

a case, a shock wave exists in front of the sphere and the conditions

behind this shock wave must be considered before any attempt can be

made to calculate the heat transfer. Fortunately, in the rarefied

subsonic flow at a very low density, such a shock wave is not present

and, therefore, offers no real problem [3]. Kavanau [43] has developed

an expression for the rarefaction correction to the continuum solution

for heat transfer from spheres. His expression represents the experi-

mental data to within 10 percent. Kavanau obtained the following

relation for the average Nusselt number in the slip flow:

-o
NuNu = (56)av M o1 + 3.42 -P Nu u

where

-o
Nu 0  average Nusselt number in the continuum region

M = Mach number

Re = Reynolds number

Pr = Prantdl number

Equation 56 can also be predicted from Oppenheim theory for the sphere

in the near free molecule regime, which is very important to the calcula-

tion of heat transfer from the sphere in the transition regime. Drake

and Kane [73] gave a solution for Nu o as
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h D
o av

Nu kk

= 2d+ (57)

0 1 (a yc 1 ) de

where

D = diameter of sphere

al =  2R-ePr

and

Jl(l e) and Y1(1 O) are the Bessel function of the first order

of the first kind and second kind, respectively.

Kavanau [43] obtained the average heat-transfer coefficients for

spheres in a subsonic air stream for the slip flow regime in the range

of Mach number 1.75 < Re < 124. He also estimated the maximum

uncertainty in the determination of the heat transfer coefficient to

run as high as 25 percent. According to his paper, the error is

mainly from the inaccurate value of Mach and Reynolds numbers, and the

maximum relative errors of these quantities vary from 0.1 to 25 percent.

Drake and Backer [74] performed experiments on spheres in super-

sonic flow. The Mach number range was 2.24 < M < 3.50 and Reynolds

nupber range was 16 < Re < 980. They reported that the maximum error

in calculating the total heat transfer coefficient might possibly be

7 to 8 percent, mainly due to the recording of instruments, such as

the potentiometer at low temperature (0.50F).

It should be noted here that Eq. 56 was derived by Kavanau [43]

for spheres in a subsonic flow for the slip flow regime. However, Drake
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and Backer [74] and Eckert [3] pointed out that Eq. 53 is applicable

for supersonic flow in the slip flow regime.

For the transition flow regime (10-1 < Re < 102) there is not

enough experimental data for the low Reynolds number region, Re > 10-1

But for 1 < Re < 20, the experimental data for various subsonic Mach

numbers are available from Kavanau's paper [43], and Eq. 56 predicts

the shapes of curves very precisely for subsonic Mach numbers. The

inaccuracy is as high as from 0.1 percent to 20 percent [43], due to

the inaccuracy of measuring Reynolds number and Mach number [43]. For

low Reynolds number, Re < 1, the free molecular flow theory by Sauer

[75] gave a good prediction which compares well to Eq. 56 in the

proximity of Reynolds number 1. Experimental data for this transition

flow regime are not available at this time.

Figure 9 was drawn out of Figs. 10 and 11 by Sherman [34]. This

figure implies the very important aspect of heat transfer coefficient

in the transition and slip regime by correlating three quantities; (1)

F(M, Re), the measured quantity in such dimensionless form that it

becomes independent of Re in the free molecule limit, (2) FFM(M), the

limit of F as Re -* 0, which is generally available from theory, and (3)

F (Re), the limit of F as M - 0, which may be available either from

theory or from experiments in viscous liquids. The transition curve

approaches this line asymptotically in the continuum limit, and approaches

this line asymptotically in the free molecule limit (Fig. 11). Within

the experimental accuracy claimed for the data of Fig. 10 (the maximum

error for the average overall convection heat transfer coefficient, hec

is possibly 25 percent [43], the elimination of apparent Mach number
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Fig. 10. Average heat-transfer coefficients for spheres in subsonic
flow to rarefied air [43].
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Fig. 11. Heat transfer from spheres [74].
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dependence is perfect for the heat transfer coefficient of a sphere if

we examine Fig. 10 carefully.

This is obviously true directly from Eq. 56. Rearranging Eq. 56,

1
Nu = (58)

+
Nu Nu

c FM

or

Nu 1 NuFM
+ (59)

NuFM NuFM Nuc
1+

Nu

Therefore, in log-log scale of Nuc/NuFM versus Nu/NuFM, Eq. 59 is close

to the straight line of log (Nu/NuFM)= log (Stc/StFM) which passes

through point (1.1) in the transition and continuum regime. The

deviation of the curve from a straight line occurs at the beginning of

the transition regime, and the reason is not quite clear at this time.

But the generalized approach will be given later for this phenomena.

Figure 12 [43] shows the possibility of the existence of one

dominating curve in the subsonic transition regime, which is the first

indication of the interpolation formula.

4.3.1. Accuracy of experimental data for sphere

The possible source of errors for measuring the total heat

transfer coefficient is [43]:

1. From the recording potentiometer (Max. 10 percent)

2.. From the time-history measurement (Max. 2.5 percent), for

both the average overall convection coefficient (he and

the average overall radiation coefficient (hr
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Fig. 12. Correlation of heat transfer from spheres in rarefied sub-
sonic air flow [43].

3. Due to radiation-conduction correction which amounts to 50

percent of the total heat transfer uncertainty (hc + hr

25%).

Therefore, the maximum uncertainty in the average convection heat

transfer coefficient (h ) is

25% x 0.5 + 12.5% = 25%

This uncertainty in h will be transmitted directly to the Nusseltc

number, neglecting deviation of conductivity (ak/k) and characteristic

length (3L/L). The above discussion of uncertainty was reported in

reference 43. Analysis of the experimental data with respect to the
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theoretical values, NuT 1/(/Nuc + I/NuFM), shows that the maximum

uncertainty runs as high as 9.1 percent as shown in Fig. 13. This

phenomena suggests that the interpolation rule can be reasonably

applied to the data. Considering the scattering of the data in the

transition, and slip flow regimes, the actual uncertainty may be within

7 percent, which is close to the results of the cylinder.

4.4. Cylinder

Heat transfer from cylinders in the slip and transition regimes

produces effects similar to those described for spheres, as was pointed

out by many investigators, including Eckert and Drake [3].

Sauer and Drake [75] presented a theoretical formulation for

convection heat transfer from horizontal cylinders in a rarefied gas.

Their solution predicts the trend of the data satisfactorily. However,

some question remains regarding the representative magnitude.

Baldwin [76] presented some experimental data for the heat

transfer coefficient in the following range:

Mach number (M) 0.05 to 0.80

Reynolds number (Re) 1 to 75

Knudsen number (Kn) 0.009 to 0.077

Baldwin confirmed that his data and the theory of Sauer and Drake [75]

had the same trend but that the theory failed to fill the data quantita-

tively.

The data from Stalder [17] covers the range 2.0 < M < 3.3 and

0.28 < Re < 203. The Reynolds number is based on the free stream

conditions and cylinder diameter. Stalder [17] reported that heat

transfer data can be represented with an average deviation of ±6 per-

cent by the following relation:
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Fig. 13. Reynolds number versus heat transfer coefficient uncertainty,
where NuT = 1/(/Nuc + 1/Nuf) (a = 0.85).



Nu0 = 0.132 Re 0 7 3  (60)10 10

where the subscript 10 refers to the fact that the viscosity and thermal

conductivity were measured at tunnel stagnation temperature, and the

density was elevated at free-stream conditions.

Equation 60 correctly represents the heat transfer data in the

slip and transition regimes for cylinders in supersonic flow where the

structure of the shock wave which forms in the rear of the cylinder is

well established. This leads to the conclusion that Eq. 60 may not

give satisfactory results if it is to be applied to the case of sub-

sonic flow where no shock wave exists.

Kavanau [43] indicated that his analysis for heat transfer from

spheres compared favorably to the results for cylinders. This indicates

that Kavanau's analysis for heat transfer from spheres can be adequately

applied to cylinders. Eckert and Drake [3] confirmed this fact by

indicating that the heat transfer effects of spheres and cylinders are

very similar.

0.4 FREE MOLECULE 0 M=0.6
S STALDER. GOODWIN a 0
AND CREAGER) * 1.

02 A 0.8 CHRISTIANSEN (0O)
S I.2CHRISTIANSEN (r#O)
' 5.80 DEWEY
X 1.33<M<4.54 LAUFER 8

McCLELLAN

0.1 02 0.4 0.6 o . o 2 4 e to 20 40 so 80100

Rer

Fig. 14. Heat transfer from fine wires in transonic flow, T = 0 [33].
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Fig. 15. Heat transfer coefficient for horizontal circular cylinders
in air showing variation with Mach and Reynolds numbers [75].

4.4.1. Accuracy of experimental data for cylinder (wire)

The accuracy of the heat transfer coefficient for cylinders is

the same as that of spheres in subsonic rarefied gas flow because of

the same characteristics of velocity and temperature distribution [3].

Uncertainty (or difference) between the theoretical value and experi-

mental data for rarefied gas region runs as high as 6 percent for sub-

sonic flows which occur in the slip flow regime. For selecting the

sample data, at least 2 percent errors exist in :reading the plot Nu

versus Re.
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As mentioned before, the interpolation rule

1
NuT 1 (58)

Nu Nuc FM

where

Nu = 0.43 + 0.48 /Re (14)

Nu RePr + 1 1 -s /2 { S [ s s)+ )J1
N = RePr a -- e I°  + S +
f Y 4 \o

s = M (25)

was taken as a theoretical computation, where the input was the standard

atmosphere [75].

Comparison of the results of Eqs. 14 and 25 and the experimental

data is shown in Fig. 16. The uncertainty, ANu/NuT x 100, is taken

as a vertical axis, whereas Reynolds number is the horizontal axis,

and Mach number is a parameter. The experimental data were taken from

references 3, 7, 75, 34, and 78 for subsonic flow. The.graph shows

that the uncertainty increases as Mach number increases, reaching maxi-

mum (ANu/NuT x 100) percent = 6.1 percent at p = 0.8 and Re = 13. As

the experimental data were obtained from many authors, the plot scatters

very widely, and the large spread in the data presents firm conclusions

about the variation of the heat transfer coefficient with the Mach and

Reynolds number. But this fact also serves to improve the maximum

uncertainty to within 5 percent, rather than 6.1 percent for subsonic

flows. Therefore, the interpolation formula, NuT = 1/(l/Nuc + l/NuFM

is reasonably good to cover from free molecule flow through slip and

transition up to the continuum regime.
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Fig. 16. Reynolds number versus heat transfer coefficient uncertainty,
where NUT l/(l/Nu + 1/Nuf).
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5. General Trend of Uncertainty of the Heat Transfer Coefficients in
Rarefied Subsonic Flow

The same argument discussed in Section 3 for the free molecule

regime and transition regime can be drawn for flow perpendicular to a

cylinder. For the slip flow regime, the same argument can be applied

by the reasonably accurate calculation (the uncertainty in reading the

experimental data is approximately 2 percent compared to the average

heat transfer coefficient), i.e., the interpolation rule can be extended

reasonably to the slip flow regime.

Experimental data and the free molecular theory depart from each

other as they approach the slip flow regime. This departure is toward

a reduction of momentum and energy exchange rates, which is expected

as a consequence of slip and temperature jump effects at the surface.

The reduction amounts to about 1 percent of NuFM when Nuc/ NuFM = 0.1

[34].

In plots of Nu/NuFM versus Nuc/NuFM, many transition experiments

look alike, regardless of the body shape or quantity measured [34].

This suggests, for the plots of function ratio, that F/FFM versus F c/FFM

By examining the plots, it was found that the body shape was not

important in either continuum creeping flows (R'<< 1) or very low Mach

number free molecule flow. Therefore, the dependence on body shape is

negligible for subsonic transition flow. Summarizing the above argu-

ment, we deduce a very important interpolation formula, which applies

adequately to the entire transition regime. The interpolation rule is

1Nu = 1 1 (58)
Nu Nu

c NUFM
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Equation 58 is purely deduced by observation of experimental data for

all regimes (free molecule, transition, and continuum regime, respectively).

By reasonably accurate calculation, the interpolation rule can also be

extended to slip flow regime, as stated previously.

The following plots support the above argument very well.

O I I I fill I I I g I III

SPHERES

10 Re

Fig. 17. Continuum coefficients [34].

I , I I I I I I I I I I

0 0I

+4140

C 7483/M, C * R O 07

I V I I 1 p I uita

Fig. 18. Subsonic cylinder drag [34].
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The above two curves are the experimental results for flat plate

drag coefficients and Stanton number variation for spheres in the sub-

sonic transition regime. Surprisingly, Eq. 57 applies well to these

curves. By this analogy, if we define the following parameters,

F = F(Re,M) = any dimensionless characteristic quantity which is a

function of both Re and M.

FFM = FFM(M) = function only of Mach number. Geometry is not important

for the free molecule flow.

F = F (Re) = function only of Re in subsonic continuum regime as M

S0. (61)

then, any characteristic quantity for the subsonic transition regime

can be formulated by

1
F(Re,M) = 1 1 (62)

FF (M) F (Re

F(Re,M) for transition regime would be any characteristic quantity, say,

Stanton number [St(Re,M)], drag coefficient [CD(Re,M)], or Nusselt

number [Nu(Re,M)], etc. Equation 58, the heat transfer interpolation

rule for the transition regime, accurately represents the departure

between continuum and slip flow regime, and also that of the free

molecule and transition regime [34]. The inaccuracy of this interpola-

tion formula for all regimes in subsonic flows runs as high as 7 percent

for spheres and 5 percent for cylinders, as shown in Figs. 13 and 16,

respectively.
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PART II

RECOVERY FACTOR

1. Introduction

The direct measurement of static temperature To in a moving.

fluid is of great importance in heat transfer measurements. The

temperature indicated by any thermometer immersed in the fluid is

higher than the static temperature, for there is an increase of

temperature through the boundary layer from the static temperature at

the edge of the boundary layer to the recovery temperature Tr at the

surface.

T will, in general, be different on different parts of the

surface, depending on geometry, Reynolds number, etc., and the

thermometer will indicate a mean recovery temperature.

The recovery temperature'is expressed nondimensionally by a

recovery factor r defined by the equation [3]

2
T -T r (63)r O 2Cp

or, in other terms, the recovery factor is usually defined as

T - T

r T -T (64)
o 0

where the subscript o refers to the stagnation condition. The accurate

determination of the recovery factor is very important in heat transfer

measurements, recovery temperature and heat flux.

The following discussion concerns determination of the recovery
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factor in the continuum, slip and transition, and free molecular

regimes for the flat plate, cylinder, and sphere.

2. Continuum Flow

2.1. Flat Plate

2.1.1. Laminar boundary layer on a flat plate

The energy equation which describes heat transfer in a laminar,

steady boundary layer, including the effect of internal friction is [3]

T T 2T 2
u - + v - = a _ + 2 (65)ax 3 y 2 Cp y

The situation to be considered first is the one with an adiabatic

surface. The boundary condition is

dT
d 0, at y =0dy

T T=T at y =

The recovery field is identical with that of low flow velocities as

long as the properties are considered constant.. A solution to the

problem to determine the temperature field in the boundary layer was

obtained for the first time by Pohlhausen [6]. A transformation to a

total differential equation is possible by introduction of the parameters

f and n and by use of the following parameter,

T - T

r 2u /2C
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which expresses the temperature field in the boundary layer in a

dimensionless form. Noting that

u
2 vx

and

f(n) =
¢rux

where

' = stream function

Equation 65 becomes

d2Cr d r Pr d2 f
2 + Pr f d + 2 = 0 (66)2 d 2 2

dn do

A solution of this equation can be obtained by the method of variation

of coefficients and results in

Pr Pr
Cr dn - K-2 d (66.a)

o o

where

Sf exp - 2 exp Pr fdn dn (67)

0 0

The assumed plate surface temperature is its recovery temperature, and

the value of the parameter Cr at the wall is equal to the recovery
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factor r. The recovery factor is, therefore,

Pr n 2f
r = exp Pr f 2 exp r fdn d d (68)

Values of the recovery factor have been obtained by numerical

integration of this equation. Busemann [3] has shown that these values

can be approximated in the Prandtl number range from 0.5 to 5 by the

simple expression

r / •r (69)

For low velocity boundary layer, the heat flow at the plate

surface per unit area and time is determined by the difference between

the actual wall temperature and the temperature of the free stream

outside the boundary layer. The heat flow in a high-velocity boundary

layer is given by the same relation as the heat flow in a low-velocity

boundary layer except that the temperature potential determining the

heat flux for high velocity is the difference between the actual wall

temperature and its recovery temperature.

For high velocity boundary layer [31

(ay. e r)

For low velocity boundary layer,

qk-k T - T

where
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e - Pr fd n

e o dn

0

2.1.2. Turbulent boundary layer over a flat plate

Since the energy equation for the boundary layer is linear in

temperature, then all the relations derived for the determination of

heat flow over ,a flat plate for the laminar boundary layer with low

velocity apply for high velocity after replacing the free stream

temperature by the recovery temperature. This rule holds also for

the turbulent boundary layer. The only additional knowledge required

is that of the recovery factor for the particular situation,

from which the recovery temperature can be determined. For turbulent

flow, the following relation has been derived theoretically [791 and

verified for Prandtl values near 1 [3].

r = (Pr)1 / 3  
(71)

It has been established that the heat transfer relation for a

constant property fluid approximates the conditions in high velocity

flow of gases provided the pressure in the flow field is constant and

the property values are introduced at an appropriately chosen reference

temperature.

It was found that the relation r = Pr accurately describes the
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results of the calculations for gases with variable properties, provided

the temperature differences Tr  (when T0 = static temperature) are

such that the variation of specific heats in this temperature range can

be neglected [5]. For very large supersonic velocities, when the varia-

tion of the specific heats becomes important, the Prandtl number is

introduced at a reference enthalpy [3]

i* = i + 0.72(i r - i) (72)

In laminar flow at a moderate temperature, the recovery factor

is 0.84. For the turbulent boundary layer flow of air over a flat

plate, a value of 0.88 was measured [3]. In the transition region

between laminar and turbulent boundary layers, the recovery factor

rises from the value of 0.845 to a peak 0.89 and then decreases to

the turbulent value of 0.88 as seen in Fig. 19.

0.88 -I-

0.86

0.84
2 4XIO 4  6

Re

Fig. 19. Laminar transitional and turbulent temperature-recovery
factors r for a (measured on a cone at M = 3.12): [80]

a. High stream turbulence
b. Low stream turbulence
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Van Driest [5] made the assumption up = constant as a first

approximation, and employed a method of successive approximations. The

solution is developed for a gas with Pr = 0.75, constant properties,

Y = 1.40, and the Sutherland law for viscosity. Despite the temperature

dependence of the fluid properties, the equation r = /r is again found

to be a good approximation [3].

As discussed above, in laminar flow r = (Pr)1/2 = 0.845 for air;

and in turbulent air flow, r = (Pr)1 / 3 = 0.88. Experimental values

confirm the above equations very well, and uncertainties are approximately

0.0051 percent for both cases; i.e., uncertainty for laminar flow = 0.845x

100 percent =1 percent, and for turbulent flow = x 100 percent

1 percent.

2.2. Cylindrical Body

Some confusion exists concerning the recovery factor values for

blunt bodies (cylindrical, circular, etc.).

Thompson [81] was interested in the low velocity case. His

experimental data for thermistors yields recovery factor values between

0.70 and 0.80. The results of Thomson were closely matched by the

results obtained by Hottel and Kalitinsky [82], which are also reported

by Moffat [83]. Hottel and Kalitinsky [82] obtained the following

values for low speed flow:

For wires normal to flow; r = 0.68 ± 0.07

For wires parallel to flow; r = 0.86 ± 0.09

They also reported recovery factor values for small thermocouple

balls attached to very thin wires. Values of 0.74 with normal flow

and 0.78 with parallel flow [76] were reported.
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2.2.1. Degree of accuracy for cylindrical body

The results mentioned above reveal an inconsistency in the

recovery factor values for wires normal to the flow in subsonic flow

and supersonic flow. Many investigators agree [43, 82, 83] that the

proper value for the recovery factor in supersonic flow is about 0.85

and that Mach number has no effect on recovery factor. The disagree-

ment, however, involves the correct value for r in the subsonic flow.

If one chooses the value of 0.85 for r in the supersonic regime and the

value of 0.68 in the subsonic regime, an abrupt discontinuity exists

at Mach number unity. Since many investigators agree that r is

independent of Mach number variation and that there is no slow change

detected in the neighborhood of Mach number unity, then this is not

physically possible.

On the other hand, Schubuer and Tchen [841 reviewed the experi-

mental results of many investigators in both subsonic and supersonic

flow regimes, and reported that the recovery factor for cylindrical

bodies in laminar flow has the value of 0.85 for both subsonic and

supersonic regimes. Haworth [85] indicated that the recovery factor

for blunt bodies has the value of 0.85 in laminar flow. Van Driest

[5] pointed to this same conclusion.

Hottel and Kalitinsky [82] pointed out that their data for

subsonic flow showed no effect of Mach number variation on the recovery

factor values. This important conclusion was also pointed out by

Schubuer and Tchen [84], who indicated that in their reviews of experi-

mental data of many investigators in both subsonic and supersonic

regimes, they found practically little or no change in the recovery
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factor values due to Mach number. It was pointed out by Kavanau [43]

and Atassi and Brun [21] that at low speeeds, the difference between

the adiabatic wire temperature Tr and the gas stagnation temperature

Te, is no more than a few degrees centigrade. Therefore, it is

difficult to determine the recovery factor with sufficient accuracy by

direct measurement of the adiabatic wire temperature.

It is believed that the recovery factor value for wire in normal

flow should be taken as 0.85 in laminar flow and 0.88 in turbulent flow

in both the subsonic and supersonic regions, respectively. Therefore,

it is believed that the values obtained by Hottel and Kalitinsky [82]

and Thomson [81] are in error.

Some investigators [3] indicated that the results of measure-

ments on a cylinder in a subsonic air flow normal to its axis yield

recovery factors at the leading edge up to values approaching unity

at the stagnation point. Actually, the recovery factor does not vary

significantly from 0.84 or 0.88, recommended for laminar or turbulent

flow, respectively. The reason for the erroneous conclusion reached

in reference 5 is that the recovery temperatures for leading edge

surfaces are higher than for other areas of the body for a given speed

and ambient altitude conditions. This has been misinterpreted as be-

ing the result of an increase in the recovery factor at the leading

edge.

The reason for the higher recovery temperature at the leading

edge surface is due to the fact that the local static temperature is

considerably higher because of the adiabatically compressed flow region

in this area [87].
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Uncertainty calculations for both laminar and turbulent flow

are as follows for a cylinder parallel to the flow:

0.05
Laminar (both subsonic and supersonic) uncertainty =0.05 x

100 = 6 percent.

0.05Turbulent (both subsonic and supersonic) uncertainty = 0.88 x

100 = 5 percent.

These values are purely empirical, and corrected by several

investigators. Also, the uncertainty may come mainly from the reading

error of the data and instruments. If we consider this effect, the

actual error.would be smaller than that reported.

2.3. Spherical Body

It was pointed out by Haworth [86] and Eckert and Drake [3]

that the shapes of the flow around spherical and cylindrical bodies

are similar. This leads to the conclusion that the above discussion

concerning cylindrical bodies applies as well to spheres. Haworth [86]

suggested the value of 0.85 for the recovery factor in laminar flow,

regardless of Mach number. Eckert and Drake [3] and Van Driest [5]

suggested the same value of 0.85. Beckwith and Gallagher [87] showed

that at any point around the spherical body, the recovery factor values

closely follow the value given by the laminar boundary layer r = YPr

when the flow is laminar, or the value given by the turbulent boundary

layer r = (Pr)l/3 for turbulent flow.

2.3.1. Degree of accuracy for sphere o

For continuum flow, the recovery factor is given by the relation

r = (Pr)1/2 for laminar flow, and by r = (Pr) /3 for turbulent flow.
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Measurements for the laminar recovery factor show a close agreement

with the relation r = (Pr)1/2 = 0.845 as shown by Van Driest [5] and

Haworth [86]. Experimental data for laminar flow by Schubuer and Tchen

[84] and Haworth [86] show that the laminar recovery factor values are

between 0.825 and 0.865. The data also indicates that the turbulent

recovery factor varies between 0.875 and 0.890 in close agreement with

the relation r = (Pr)1/3 = 0.88. Figure 20 shows the argument mentioned

above for various cones. Many investigators agree that the general

trend of the recovery factor of spheres is similar to that of flat

plates.

The uncertainty calculations are:

Laminar flow: r = 0.85 ± 0.04

0.865 - 0.825
uncertainty = 0.85 x 100 4 percent

Turbulent flow: r = 0.88 ± 0.02

0.890 - 0.875uncertainty = 0.88 x 100 = 3 percent

The uncertainty ranges were taken from the experimental data.

3. Free Molecule Flow

Heat transfer from a body to a rarefied gas stream in the Max-

wellian equilibrium velocity distribution can be calculated entirely

from the fundamental notions of the kinetic theory of gases. The

results can be shown as a function of the ratio of the specific heats,

and are generally in good agreement with the experimental data, so far

as the molecular structure of the gas is concerned (1, 58, 59]. It was

shown by Oppenheim [16] that the determination of correlated results

for a few fundamental shapes such as flat plates, horizontal circular
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Tunnel M. ReJin. Cone model
* Ames lx3ft no. I 1.97 578,000 10* hollow steel
o Lewis 8x6 ft 1.98 . 398,000 10* hollow steel
4 Lewis 18x18 in. 1.94 258,000 10* hollow steel

1.00 V Ames 6x6 ft 1.9 187,000 10* hollow steel
* Ames 1

0x14 In. 4.48 193 ,000 10* hollow steel
* Ames 2x2 ft 1.21 238,000 10* hollow steel
* Lewis 2x2 ft 3.93 86,000 10* hollow steel
9 Ames lx3 ft no. 2 3.00 700,000 10* hollow steel
.> Aberdeen 2.18 10* woodo x GALCIT 5x5 in. 6.0 230,000 20* ceramic

t o Ames Ix3 ft no. I 2.0 294,000 209 hollow steel
S 0.95 590,000 200 hollow steel

A JPL 18x20 In. 4.50 344,000 5* Fiberglas
4 . JPL 18x20 in. 1.63 220,000 13* Lucite
+ JPL 18x20 in. 4.50 193,000 13 Lucite
O JPL 12x12 in. 1.63 493,000 130 Lucite
* JPL 12x12 In. 2.54 635,000 13* Lucte

S +.8 08

0.80

'q 4 *1 0.8901

.0.85 Variation of the temperature recovery factor of cones with

the distance from the cone tip and on the conditions at

the edge of the boundary layer. [84]
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cylinders, and spheres will enable the formation of results for more

complicated cases, by synthesis of the results of these simple shapes.

The heat transfer in the free molecule flow is represented in terms of

the Stanton number and the thermal-recovery factor. An expression for

the thermal-recovery temperature Tr in the instance where Twall = const.,

is obtained when the heat transfer 0 is taken to be zero in the derived

equations.

In such a case, the recovery factor is [16],

T -T -
r Y + 1 F (73)

T -0 T + 1 2

o a S G+

where

G = A 42s dA

and

- 1 f (l + erfn) dA

A

A = area of the shapes

n =U /V

U = component of mass flow velocity normal to the wall

V = mean molecular velocity

S = u/V = [iM; molecular speed ratio related to Mach number M

Figures 21 and 22 show the thermal-recovery factors for a flat

plate, a sphere, and a transverse circular cylinder in a free molecule
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Fig. 21. Thermal-recovery factors for a flat plate, a sphere, and a
transverse circular cylinder in a free molecule flow. [16]
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Fig. 22. Modified recovery factor in free molecule flow. [1]
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flow as a function of the speed ratio. They also clearly show that the

recovery factor in free molecule flow for a flat plate at zero angle

of attack is constant for all values of speed ratio and Mach number,

while the recovery factor values for sphere, cylinder and the flat

plate at an angle of attack is a function of the speed ratio. However,

the recovery factor values of a sphere, cylinder and flat plate at an

angle of attack approach the value of the flat plate at zero angle of

attack at high Mach numbers. For low Mach number in the free molecule

flow, recovery factor for the sphere and cylinder is constant.

It should be noted that the flat-plate results apply to any

surface making a constant angle with the flow. Therefore, these results

apply to wedges and cones in comparison with the flat plates at angles

of incidence with the flow, where the angle of incidence of the plate

corresponds to half the opening angle of the wedge or cone. The zero-

angle-flat plate corresponds to conditions occurring on a cylinder of

any cross-sectional shape in axial flow.

A flat plate inclined at an angle of incidence 8 to the direction

of flow can be treated in terms of the flat plate normal to the flow,

then

y 2 2re(s) = + 1 cos2 + rn(n) sin 2 (74)

where

n = s sinO

subscript n = a flat plate normal to the flow

Cv
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Generally, rplate (parallel flow) < rcyI (parallel flow) < cyl (cross

flow). Equation 73 indicates that for the case of flat plate at an

angle of attack, the recovery factor in the free molecular regime is

a function of both the speed rate and the angle of attack [3, 16, 73].

3.1. Degree of Accuracy

Experimental data of Stalder [17] for transverse cylinders in

supersonic flow andthe data of Drake and Backer [74] seems to confirm

the Oppenheim theory [16]. For a sphere in supersonic flow, Drake and

Backer [74] found that the overall recovery factors, when plotted

against Re/M, were shown to increase to values above unity at values

of Re/M < 5; whereas at Re/M > 5, the recovery factors were shown to

remain practically constant at a value r = 0.90'± 0.03. Therefore, the

uncertainty for /Re/M > 5 runs as high as 3 percent [74]. This effect

is one associated with the transition region, and is not the result of

nonadiabatic gas flow.

4. Transition and Slip Flow Regimes

4.1. Introduction

Contrary to the situation in the continuum and free molecule

flow regimes, there are no dependable theories to analyze and predict

the heat transfer and recovery temperature in the slip and transition

flow regimes. Experimental data in these two regimes is not very help-

ful either.

There are some experimental data for the recovery factor in super-

sonic flow for some geometrical shapes [17, 74, 33], but there are very

little data for subsonic flow [21, 33].
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Experimental data for cylinders and spheres show that the

rarefaction effects begin to show at about Kn = 0.02. Drake and Backer

[74] reported that the recovery factors start to depart from the

continuum flow values at about Re2/M2 = 20, where the subscript 2 refers

to conditions after the detached shock [88].

Figure 23 indicates that the recovery factors at values of /R el/M

> 5 are essentially constant at a value of 0.93 ± 3 percent, where the

-FREE MOLECULE FLOW
REF. 4

1.0 -------- - -

- RECOVERY FACTORS

0.9 a

S0.80.2 - - ------ - -
MEAN FREE PATH (APPROX.)

SPHERE DIAMETER NO 3 NOZZLE NO 4 NOZZLE
0.7 - a .- 0.50 In, Oo 0 0.50 In Dio.

I A 0.25 In Do o 025 InO o.
S0 10 In. Oio p 010 In Dio .

0 - 0.175 In Dio. 6 0.175 in Doa
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JREYNOLDSI
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Fig. 23. Variation of thermal recovery factor for spheres in a
transition flow regime [74].

subscript i refers to conditions before the detached shock and where

Re2/M2 = 4Re2/M1 . At Rel/M 1  5, however, and as 'Rel/M1  0, the

values of the recovery factor increase rather sharply to values greater

than unity, indicating that the recovery temperature attained by a sphere

in a stream of gas at a large Mach number is greater than the total

temperature of the flow.

The data of Stalder [17], which is shown in Fig. 24, shows that

fully developed free molecule flow occurs for Kn of approximately 2.0
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Fig. 24. Thermal recovery factor for transverse cylinders in supersonic
flow [17].

and higher, and that for Kn > 0.2, the recovery factor r exceeds unity

even though the free-molecular flow is not fully developed. Figure 24

also shows that the data in the range of Kn from 0.2 to 2.0 are

corrected by Kn alone with no systemetric Mach number effects shown.

Further, it is evident that for values of Kn > 0.2, the recovery factor

exceeds the value of unity, presumably due to the development of free-

molecular flow effects. The experimental data clearly show the trend

of the recovery factor in the slip and transition regimes. The recovery

factor is equal to that of the continuum flow and stays constant for

slight increases in rarefaction effects. Then these rarefaction effects

start to increase the recovery factor asymptotically until it approaches

the value which corresponds to the free-molecular regime.

Vrebalovich [33] reported a collection of experimental recovery

factor data for both supersonic and subsonic flow. These data are shown
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in Fig. 25, where

nFM c- c

Tr Recovery temperature
T - Stagnation temperature

o 0.6
1.21.0

1.0 O M 1.2
o dls.6
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Figure 25 shows the same trend as Fig. 24. The supersonic flow

data show that in the slip and transition regimes, the recovery factor

is mainly dependent on Knudsen number and that Mach number has no effect.

However, the recovery factor data clearly indicate that Mach number has
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a profound effect in the subsonic flow. The data show that for any

Knudsen number in the slip or transition regimes, Mach number increases

cause a corresponding increase in the recovery factor value.

Attasi and Brun [21] reported some recovery factor data for

wires at low Mach numbers. This data indicate the same trend shown by

Stalder [17] and Vrebalovich [33]. However, their data yield higher

values for the recovery factor in the slip and transition regime than

those reported by Vrebalovich [33] for the same Mach numbers. This

discrepancy is not surprising at low Mach numbers because it is very

difficult to determine the recovery factor with sufficient accuracy

at low Mach number [33, 43]. The data of Vrebalovich [33] is more

consistent, which gives more confidence in its accuracy. His experi-

ment is successful with only 1 percent error at ReT = 0.5, M = 0.6

for a cylinder [33]. The curves presented are faired from the experi-

mental data by the variable, n Tr /T, where

T = recovery temperature of infinite length

T = stagnation temperature

and are very close to the results of Kovasnay [89], in which he con-

sidered end loss corrections of the cylinder at low Reynolds numbers.

This aspect is shown in Fig. 26.

o .-

O - t CORRECTED FO END LOSS
--- NOT CORRECTED FOR END LOSS

t i il l i
.0 a It Is N go 32 as 0

Fig. 26. Recovery temperature ratio in transonic flow [33].
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4.2. Sphere

Figure 27 shows the thermal recovery factor r versus Reynolds number

for spheres in supersonic flow. The uncertainty runs as high as 5 percent.

o Droke-Backer: M = 2.7-4.1
S0o o E berly M s 4-6 (selecte doto)

0.95 0o 00

0.90 -

0

V 0.85
089

0. 2040 100 200 400 1000 2000 4000 8000
Reynolds number (free stream)

Fig. 27. Thermal recovery factor for spheres in supersonic flow [1].

4.3. Cylinder

Figures 26 and 27 show r versus Kn for different model diameters.

The effect of the increase of rarefaction on the trend of r as it

approaches the free-molecular value is apparent. The uncertainty of the

data runs as high as 4 percent. These data were taken for cylinders

held normal to the stream.

4.4. Flat Plate

Laminar slip flow over a flat plate at zero angle of attack can

be treated in terms of the Rayleigh problem of an impulsively started

plate. The inertia and viscous terms in the Navier-Stokes equations can

be simplified in this case. Since a reliable method for extending boundary

layer theory to lower Reynolds numbers is not yet available, and very

little reliable heat transfer experimental data for the case of the flat

plate are available at the present time, an approximate solution is ne-
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cessitated.

In a private communication, Morrissey [91] reported an empirical

formula used to interpolate from the free molecular recovery factors

to the continuum recovery factors as a function of the Knudsen number.

Kn(rFM - rc) (76)
r = r + (76)c Kn + 0.3

where

r = continuum flow recovery factor

= 0.88 for turbulent flow

= 0.845 for laminar flow

and

rFM = free molecular flow recovery factor

The free molecular recovery factor depends on the geometrical shape

and the speed ratio which was mentioned in Oppenheim's theory.

Koshmarov [92] obtained a similar relation from his own heat

transfer experimental data involving a sharp cone. By plotting

r -r c M e T
versus

rFM - r Re p Te

he obtained a series of parallel straight lines with the half angle at

the cone apex as a parameter. The subscript e refers to the total

equilibrium condition, while the quantities with no subscript refer to

the undisturbed flow far away from the cone.

The recovery factor in the transition regime is, as shown in

Eq. 76, a function of the Knudsen number. It is also a function of the

speed ratio and the angle of attack in the same manner discussed before
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regarding the free-molecular recovery factor. Equation 76 was apparently

obtained by smoothing out the existing experimental data in the slip and

transition regimes. This equation compares well with the existing recovery

factor data in supersonic flow [17, 331. However, the comparison does

not seem to be very good in the case of subsonic recovery factor data.

In this case, Eq. 76 yields values higher than the reported experimental

values. A better adjustment might be obtained if the constant 0.30 in

the denominator of Eq. 76 were changed to a slightly higher value.

Some investigators [81, 82] reported their data in terms of

rFM - r versus Kn. It should be expected that the quantity crFM c r - r
is a function of Knudsen number, Mach number and angle of attack. The

dependence on Mach number and angle of attack is apparent since the free

molecule recovery factor rFM is a function of both the Mach number and

the angle of attack. The dependence of rFM on the Mach number is pro-

nounced in the subsonic flow. This leads to the conclusion that Eq. 76

should be written as

c Kn
rF r Kn + c (77)

where the parameter c is a function of Mach number. Morrissey [911

chooses the numerical value 0.3 for c, which makes Eq. 77 agree with

the supersonic data. For low Mach numbers the value of c seems to vary

from 0.5 to 0.9, for Mach numbers 0.9 to 0.1, respectively. Oman and

Scheuing [57] obtained the following closed form expression for the

recovery factor in laminar slip flow over a flat plate for Pr = 0.72

and thermal accommodation coefficient a = 0.9
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r = [4y/(y + 1)] [c/(2-a)] + /Pr - (us/u-)

As Us/u. increases toward the free molecule value, r increases to a

value greater than unity. The assumptions involved, therefore, appear

to account for the predominant slip flow effects.

4.5. Degree of Accuracy

The uncertainty in the value of the recovery factor in the slip

and transition flow regime may be argued as follows:

a. The reported data for the recovery factor in the transition

regime seem to have a maximum uncertainty of 5 percent, which is the

ratio of the difference between the experimental and theoretical values

to the theoretical value [17].

b. If it is decided to use Eq. 77 to obtain the recovery

factor in the transition regime, then, since r in the transition regime

depends on rFM and rc, its uncertainty depends on the uncertainty of

both rFM and re. In Eq.. 77, if the turbulent value of 0.880 is usedC

for the continuum recovery factor, then the reported data fall between

0.825 and 0.865. With respect to the free-molecular recovery factor,

experimental data agree with the Oppenheim theory. Combining the uncer-

tainty in both the continuum and free molecular recovery factors yields

the conclusion that the uncertainty in the recovery factors in the

transition regime might run as high as 7 percent. With respect to the

flat plate, this uncertainty might be conservative due to the effects of

changing the angle of attack. The angle of attack has no-effect on the

recovery factor in the continuum flow [84], while Oppenheim theory correctly

predicts the influence of angle of attack on the recovery factor in the
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free molecular regime [17, 85]. These two conclusions are important in

predicting the effect of the angle of attack on the recovery factor in

the slip and transition flow as can be seen in' Eq. 76. Equation 77 was

used to predict the recovery factor values in the slip and transition

regimes. Examination of Eqs. 74 and 75 shows that the effect of the

angle of attack is more severe at low speed than high speed (Fig. 22).

Figure 28 shows the variation of recovery factors at a fixed Mach

number. The experiment [33] and theory confirm the fact that as Mach

number becomes high, the recovery factor becomes lower for a cylinder.

Figure 29 shows the trend that for decreasing Knudsen number, the

recovery temperature ratio becomes smaller [33].
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SUBJECT INDEX

Absorptivity of surface, 26

Accommodation, complete, 13

coefficients, (see Momentum and thermal accommodation coefficients)
Accuracy, transition and slip flow regime, for sphere, 43, 44

for cylinder, 46

of recovery factor in continuum regime, for cylindrical body, 61
for spherical body, 63

for cones, 65

for free molecule flow, 69
for transition and slip flow, 77

(see also Uncertainty)

Actual error, 63
Adiabatic recovery temperature, 23, 26

Adiabatic surface, 55

Adiabatic wall temperature, 19

Ambient altitude conditions, 62

Angle of attack, 20, 68
local, 26
zero, 27

Analogy of Nu = Nu(Re, M), 31

Apparent Mach number, elimination of, 41

Asymptotically in the continuum limit, 41

Axial flow, 17

Bessel function of first order, 40
modified, 18

Boltzmann, equation, 11

linearized, 36

constant, 26
Boundary condition, 36, 55

for flat plate in transition and slip flow, 34, 35
for temperature jump, 35, 36

Boundary layer, 34, 54

concept for flat plate in continuum flow, 4, 5
for cylinder in the continuum flow, 6, 7
development of, 4

for flat plate in continuum flow, 5

for high velocity, 57

laminar, for flat plate in continuum flow, 4, 55
for low velocity, 57

turbulent, for flat plate in continuum flow, 5, 58
Bunett equations, the order of, 35

Characteristic, length, 2, 13, 32

dimension, 11

quantity, 53

Collision, 32
between molecules, 2, 3, 12
between molecules and body (wall), 2, 3

the number of, 3
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Compressibility, 34
Concave surface, 26
Concentric cylinders, 12, 13
Concentric spheres, 12, 13
Cones, 17, 65, 68
Continuum creeping flow, 51
Continuum flow, 1, 55

definition of, 3
usual concept of, 3

Continuum flow regime, 4
boundary layer of flat plate, cylinder, sphere, (see Boundary layer)
cylinder, 6
flat plate, 4, 55
sphere, 10

Convection, only, 24
combined, 26

Convective body in free molecule flow, 22
Convective effect, 18
Convex, body, 21

surface, 26
Correction parameter, dimensionless, 32
Correlation, 31

of heat transfer for sphere, 44
of three quantities, 41, 43

Critical value of Reynolds number for flat plate, 6
Cross flow, 69
Cylinder, 6, 27, 45, 56, 74

adiabatic wall temperature, 20
angle of attack, 22, 25
average film heat transfer coefficient, 9
experimental results, 9, 10, 28, 29
experimental data for recovery factor, 69
heat transfer in the free molecule flow, 16
heat transfer in the transonic flow, 47
Nusselt number for transition and slip flow, 45, 46, 47
recovery factor, 74 (see Recovery factor)
stagnation point of continuum flow, (see Stagnation point)
subsonic drag, (see Drag)
transonic flow, (see Transonic flow)
uncertainty, (see Uncertainty)

Cylindrical body, 60
accuracy of, 61
at great distance, 8
recovery factor (see Recovery factor)
separation of flow around, 8

Drag coefficients, 21
in subsonic transition flow, 5, 52

Degree of accuracy for sphere, 63, 77
Density, 11, 12

of low part, 39
in the free molecule regime, 14
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Departure from free molecule and continuum regime, 28, 51
Dependence, on thermal accommodation coefficient, 33

on body shape, 51
Determination of the heat transfer coefficients, 8
Deviation, 31

at the beginning and end, 33, 43
average, 45

Different regime of rarefied gas dynamics, 3
Downstream portion of sphere, 10

Emissivity, 19, 26
Empirical formula, 75
Energy equation, 36, 37
Energy exchange, 51
Energy flux, 13

incident and reflect, 13
Error, 40

maximum, 39, 40
Error function, 18

integral of complementary, 18
Error for experimental data in transition and slip flow regime, 44
Equilibrium condition, 76
Equilibrium temperature, 21
Experimental results, or data (see Freemolecule, transition regimes, or

flat plate, cylinder and sphere)

Flat plate, 4, 36, 55
angle of attack, 23, 25
continuum flow regime, 4
critical Reynolds number for, 6
experimental result of, 27
inclined at an angle, 68
laminar flow over, 4, 5, 35, 55
numerical solution of, 26
Nusselt number of, (see Nusselt number)
turbulent flow over, 5, 6, 58

Fourier heat conduction law, 3
Free molecule flow, 1, 64

definition of, 3
of recovery factor, 67

Free molecule regime, (see Introduction)
adiabatic recovery temperature, 23, 26
concave surface, 25
convective heat transfer rate, 19, 23
density (see Density)
experimental results, 27, 28, 29
generalization, 30
hypersonic, 21, 24
Maxwell velocity distribution function, 21
mean overheat (see Overheat)
modified recovery factor (see Recovery factor)
modified Stanton number (see Stanton number)
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Free molecule flow regime (continued)
nonuniform gas, 26
Oppenheim theory (see Oppenheim theory)
review of theory, 14
stagnation temperature, 24
various geometrical shapes, 15, 16

Free stream condition, 37
Friction, 34

internal, 55
skin, 32, 37

Function ratio, 51

Gases, rarefied, 1, 2
rarefied stream, 14

Gas constant, molecule, 12
Gas dynamics, rarefied, 1, 3
General effect of slip flow and temperature jump, 34
General formulation, 32
Generalization, 31
General trend, of uncertainty in rarefied subsonic flow, 51

of recovery factor, 64

Heat conduction term, 36
Heat transfer, 24,34, 36, 38

convective, for large Mach number, 26
in cylindrical body, 6

from sphere, 74
in a laminar flow, 54

by interpolation rule, 52
measurement, 55
to a body, 13

Heat transfer coefficient, 2, 3, 4, 5
average, 9
average, for sphere, 40
convective, for transverse cylinder, 28
for separated part, 8
for sphere in subsonic flow, 27
for turbulent flow, 5
in free molecule flow over flat plate, cylinder, sphere, 17, 18
local, 7, 8
over flat plate, 4, 5

Heat transfer mechanism, 3
Heat transfer rate, convective, 19, 23
Hypersonic, (see Free molecule regime)

in flat plate, 27

Inaccuracy, 40
of interpolation rule, 53

Incident angle, 16
Inertia terms, 36
Initial conditions, 12
Interaction effect, 34
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Interpolation, 1
formula, 43, 51
rule, 1, 27, 42, 44, 49, 51, 53

Introduction, 1
free molecule regime, 11, 67
heat transfer coefficient, 2
recovery factor, 2, 54, 55
transition and slip flow regime, 32, 73

Inviscid layer, 34

Kinetic theory, 31
Kinetic gas, 11
Knudsen number, 1, 3, 13, 31, 34, 46, 78, 79

definition, 2
function of, 76, 77

Knudsen's formula, 12

Laminar boundary layers, 8, 10, 59, 60, 63
Laminar flow, 59, 64

over flat plate, 4, 36
Laminar recovery factor, 64
Laminar slip flow, 38
Laplace transformation, 37
Leading edge, 62
Linearized Boltzmann equation (see Boltzmann)
Local angle of attack, (see Angle of attack)
Local heat transfer.coefficient (see Heat transfer coefficient)
Local mean free path (see Mean free path)
Location of flow separation, 10
Log-log scale, 43
Loss due to convection heat transfer, 19
Loss of quantitative information, 31
Low density (see Density)

Mach number, 15, 23, 31, 33, 39, 45, 48, 63, 68
as a parameter, 31
independence principle, 24
limit of, 33
unity,61
variation, 61
very large, 24, 38, 71
zero, 33

Macroscopic, 31
Maxwell-Boltzmann equation, 32
Maxwell distribution, 26

of velocity function, 21, 32, 64
Maximum error (see Error)
Maximum uncertainty (see Uncertainty)
Mean free path, 2, 12, 32

local, 33
Mean overheat (see Overheat)
Modified recovery factor (see Recovery factor)
Modified Stanton number (see Stanton number)

- 93 -



Molecular, encounters, 32
gas constant, (see Gas constant)
heat capacity, 13
most probable velocity, 15
weight, 13

Molecule(s),incident, 23
Momentum, 13

flux, 31
reduction of, 51

Momentum accommodation coefficient, 14
for common engineering surfaces, 14
of completely diffused reflection, 14
of concentric cylinder and sphere, 13
of parallel plates, 13
tangential and normal, 12, 13, 14

Navier-Stokes equation, 3, 35
simplified, 36

Numerical integration, 57
Numerical solution, for flat plate, 26
Nusselt number, 9, 17

average, for flat plate in free molecule flow, 38
average, for sphere in free molecule flow, 39
average value, for flat plate, 5 (see also Flat plate)
local, 4, 27
of flat plate in turbulent flow, 5, 6

of cylinder in continuum regime, 6, 7, (see also Cylinder)
versus Reynolds number in subsonic flow, 28

Oppenheim theory, 14, 18, 26, 31, 64
for various geometrical shapes, 16
Stanton number, (see Stanton number)

Overheat, 20
mean, 20

Parallel flow, 60, 69
Parallel plate, 12
Parameter, 34

the value of, 56
Perturbation expansion solution, 32
Plate, surface temperature of, 56
Potential flow, 7
Potential theory, 7
Prandtl number, 4, 5, 6, 11, 35, 37, 56, 57, 58, 60

Radiation, 18, 23, 26
solar, 26

Radiation coefficient, average overall, 43
Radiation conduction correction, 44
Radiative, 26
Rarefaction, 2

effect, 34
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Rarefied, 1, 2
gas flow, 48
subsonic flow, 39

Rarefied flow, high speed, 24
Rayleigh problem, 36
Recovery factor, 54, 57, 67, 68, 71

flat plate, 74, 75, 76
for sphere and cylinder, 68
for the particular situation, 58
for the (laminar) supersonic and subsonic, 63
for various cones, 63, 65
in free molecule flow, 66
modified, 23, 24, 68
for sphere, 70, 74
thermal, 66, 67, 71

Recovery ratio, normalized, 72
Recovery temperature, 54, 57, 58, 74

mean, 54
Recovery temperature ratio, in transonic flow for cylinder, 74
Reemission, diffuse, 14

specular, 14
Reference temperature, 59
Reference velocity, 9
Reference length, 9.
Reynolds number, 1,31, 33, 38, 39, 40, 46, 49

critical, 5, 6, 11
local, 4, 5,.8, 10

Shock wave, 33, 39
Skin friction, (see Friction)
Slip flow, 1, 3
Slip (flow) regime, 31, 32, 34, 51, 52

boundary condition in, 35
diatomic in, 34
flat plate in, 35
free stream condition for flat plate in, 36
heat transfer rate of, 35
Maxwell molecules in, 35
monoatomic in, 35
Stanton number in, 37
supersonic, 40

Speed ratio, 23
Sphere, 10, 30, 39, 40 (see also Subsonic, heat transfer coefficient)

average heat transfer coefficient of, 10
average Nusselt number of, 38, 39
modified recovery factor of, 11, 25

Stagnation condition, 54
Stagnation point, 5
Stanton number, 15, 20, 21, 33, 37

experimental result of, 30
limit of, 33
modified, 19, 24, 25
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Steady, 21
Stefan-Boltzmann constant, 19, 26
Subsonic, 27, 28, 31, 33, 34, 49, 60, 61, 62, 73

continuum regime, 53
drag (see Drag)
external, rarefied flow, 1
flow for sphere and cylinder, 32
flow to rarefied air, 42
free molecule flow, 31
Mach number, 40
rarefied flow for sphere, 30
rarefied flow for wire, 29
region, 19, 27
transition regime (flow), 43, 51

Supersonic, 27, 28, 39, 61
theoretical curve of, 28

Surface temperature, 13, 26

Tangential and normal components of momentum (see Momentum)
Temperature distribution, 48
Temperature field, 56.
Temperature jump (condition), 1, 34, 35

boundary condition, 34, 35
effect, 51

Temperature potential, 59
Theoretical formulation, for convective heat transfer, 45
Theory, review, 14

Oppenheim, (see Oppenheim)
Thermal accommodation coefficient, 3, 14, 32

engineering purpose of, 14
free of contamination in, 14

Thermal conductivity, 7
Thermal contact, 25
Thirteen momentum equation, 35
Transport, convective and radiative, 26
Transition (flow) regime, 1, 3, 27, 28, 32, 33, 39, 43

characteristic quantity in, (see Characteristic)
experiments, 32
heat transfer for flat plate, 37, 38
heat transfer in, 34
stagnation point in, 34
subsonic (see Subsonic)

Transition and slip flow regime, 32, 69, 72
Transition experiments, 51
Transonic recovery temperature ratio, 23
Trend of recovery factor, 72
Turbulent boundary layer, 5
Turbulent flow, over flat plate, 5
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Uncertainty, 49
actual for sphere, 44, 45
general trend, 51, 52, 53
for free molecule flow, 69
for transition and slip flow, 70, 77
of recovery factor for flat plate, 60
or recovery factor for cylindrical body, 63
of recovery factor for sphere, 64

Variable properties, 59
of specific heats, 59, 60
of temperature recovery factor for cone, 65

Variation, of accommodation factor, 18
of coefficients, 56
of Mach number, 61
with Mach and Reynolds numbers, 48

Velocity, condition, 35
distribution function, 32
slip, 34

Viscous, effect, 34
layer, 34
liquid, 41
term, 36

Wall, 34
Wall temperature, 21
Wedges, 17, 65, 68
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